Lyapunov Stability 00000 Examples 00

Stability of Nonlinear Systems –An Introduction–

Michael Baldea

Department of Chemical Engineering The University of Texas at Austin

April 3, 2012

Introduction	Lyapunov Stability	Examples	Conclusions
●0000	00000	00	
The Concer	ot of Stability		

Consider the generic nonlinear system

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \ \mathbf{f} : D \to \mathbb{R}$$
 (1)

such that $\mathbf{f}(\mathbf{x})$ is continuously differentiable and locally Lipschitz, *i.e.*, $\| \mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y}) \| \le L \| \mathbf{x} - \mathbf{y} \|$. Assume, without loss of generality, that 0 is an equilibrium point of this system, *i.e.*, $\mathbf{f}(0) = 0$.

Definition

The equilibrium point $\mathbf{x} = \mathbf{0}$ is said to be:

• stable if $\forall \varepsilon > 0, \exists \delta = \delta(\varepsilon) > 0$, s.t.

$$\| \mathbf{x}(0) \| < \delta \Longrightarrow \| \mathbf{x}(t) \| < \varepsilon, \ \forall \ t > 0$$
(2)

- unstable otherwise
- asymptotically stable if it is stable and δ can be chosen such that $\| \mathbf{x}(0) \| < \delta \Longrightarrow \lim_{t \to \infty} = 0$

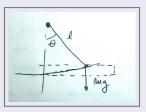
Introduction	Lyapunov Stability	Examples	Conclusions
00000			

The Concept of Stability

Observation: the above definition is a challenge-answer process: "for any value of ε , we must produce a δ that satisfies the conditions in the definition:" an impractical approach.

Example

Consider a pendulum with friction



Described by the equation: $m l \ddot{\theta} = -mg \sin \theta - k l \dot{\theta}$

Introduction	Lyapunov Stability	Examples	Conclusions
oo●oo	00000	00	
The Concept of	Stability		

Pendulum example, continued

Coordinate change to obtain a first-order ODE: $x_1 = \theta$; $x_2 = \dot{\theta}$

$$\dot{x}_1 = x_2$$
 (3)
 $\dot{x}_2 = -\frac{g}{l} \sin x_1 - \frac{k}{m} x_2$ (4)

Solutions: periodic $(n\pi, 0), n = 0, \pm 1, \pm 2, \dots$

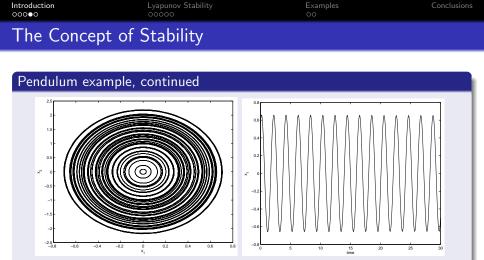


Figure: State trajectories with g = 9.81, l = 0.981, m = 1, k = 0

In the absence of friction, the system **is stable** in the sense of the definition given above.

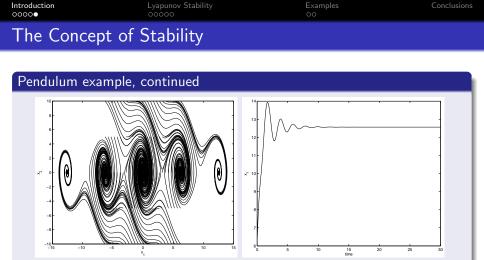


Figure: State trajectories with g = 9.81, l = 0.981, m = 1, k = 1

Friction attenuates oscillations and the pendulum eventually returns to the origin. It is therefore **asymptotically stable** in the sense of the definition given above.

Introduction	Lyapunov Stability	Examples	Conclusions
00000	●0000	00	
An Alternat	tive Approach		

Observation: using the graphical method is cumbersome and very impractical for large(r)-scale systems (n > 2). Is there a more general way to establish stability?

Pendulum example, continued

Define the energy of the pendulum, $E(\mathbf{x}) = KE + PE$:

$$KE = 0.5ml^2\dot{\theta}^2 \tag{5}$$

$$PE = mgl(1 - \cos\theta) \tag{6}$$

$$E(\mathbf{x}) = \frac{1}{2}ml^2x_2^2 + mgl(1 - \cos x_1)$$
 (7)

Introduction	Lyapunov Stability	Examples	Conclusions
00000	○●○○○	00	
An Alternat	tive Approach		

Pendulum example, continued

- no friction ⇒ no energy dissipation, E(x) = c, or dE/dt = 0 along the system trajectories. E(x) = c forms a closed contour around x = 0, which is a stable equilibrium point.
- friction \implies energy dissipation, $\frac{dE}{dt} \le 0$ along the system trajectories. Pendulum eventually returns to the stable equilibrium point $\mathbf{x} = 0$.

Examining the derivative of $E(\mathbf{x})$ along the state trajectories provides indications on the stability of the system.

Question

Is it possible to define and use some function other than energy to assess system stability?

Lyapunov S	itability		
Introduction	Lyapunov Stability	Examples	Conclusions
00000	००●००	00	

Let $V : D \to \mathbb{R}$ be a continuously differentiable function. The derivative of V along the state trajectories of **x** is given by:

$$\dot{V}(\mathbf{x}) = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} \dot{x}_i = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} f_i(\mathbf{x}) = \frac{\partial V}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x})$$
(8)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

00000	00000	00	
Lyapunov S	otability		

Let $V : D \to \mathbb{R}$ be a continuously differentiable function. The derivative of V along the state trajectories of x is given by:

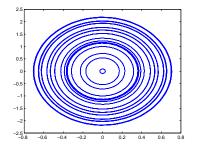
$$\dot{V}(\mathbf{x}) = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} \dot{x}_i = \sum_{i=1}^{n} \frac{\partial V}{\partial x_i} f_i(\mathbf{x}) = \frac{\partial V}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x})$$
(8)

Theorem (Lyapunov's stability theorem)

Let $\mathbf{x} = 0$ be an equilibrium point of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, $D \subset \mathbb{R}^n$ a domain containing $\mathbf{x} = 0$. Let $V : D \to \mathbb{R}$ be a continuously differentiable function, such that: V(0) = 0; $V(\mathbf{x}) > 0$ in $D - \{0\}$; $\dot{V}(\mathbf{x}) \le 0$ in DThen, $\mathbf{x} = 0$ is stable. Moreover, if $\dot{V}(\mathbf{x}) \le 0$ in $D - \{0\}$, $\mathbf{x} = 0$ is asymptotically stable.

Introduction	Lyapunov Stability	Examples	Conclusions
00000	○○○●○	00	
Lyapunov S	tability		

The function V is referred to as a Lyapunov function. The surface $V(\mathbf{x}) = c$ is a Lyapunov surface.



- if $\dot{V} \leq$ 0, when the trajectory crosses a surface, it will not cross back again.
- if $\dot{V} < 0$, the state trajectory crosses the surfaces with decreasing values of C, shrinking to the origin.

Introduction	Lyapunov Stability	Examples	Conclusions
00000	○○○○●	00	
Observations			

- The Lyapunov stability theorem can be applied without solving the ODE system
- The theorem provides a sufficient condition for stability
- The theorem does not provide a systematic method for constructing the Lyapunov function V of a system.

Constructing (candidate) Lyapunov functions

- energy is a natural candidate if well defined
- quadratic functions of the form $V = \mathbf{x}^T \mathbf{P} \mathbf{x}$, with \mathbf{P} real, symmetric and positive (semi)definite.

Introduction 00000	Lyapunov Stability 00000	Examples ●○	Conclusions
Examples			
Example 1: Per	ndulum Energy as Lyapu	nov Function	
C 11 1		1	

Consider pendulum without friction. We have

$$V(\mathbf{x}) = mgl(1 - \cos x_1) + 0.5ml^2 x_2^2$$
(9)

We can verify that:

$$V(0) = 0$$
 and $V(\mathbf{x}) > 0$ for $-2\pi < x_1 < 2\pi$.

$$\dot{V}(\mathbf{x}) = mg l \dot{x}_1 \sin x_1 + m l^2 x_2 \dot{x}_2$$
 (10)

$$= mg l x_2 \sin x_1 + m l^2 x_2 \dot{x}_2 \qquad (11)$$

$$= mg l x_2 \sin x_1 + m l^2 x_2 [-\frac{g}{l} \sin x_1]$$
(12)

(13)

$$= mglx_2 \sin x_1 - mglx_2 \sin x_1$$

(14)0

Conclusion: Pendulum is stable (not asymptotically stable).

Introduction 00000	Lyapunov Stability 00000	Examples ○●	Conclusions
Examples			

Example 2: A Quadratic Lyapunov Function for Pendulum with Friction

Will be worked in class.

Conclusions/Food	d for Thought		
Introduction	Lyapunov Stability	Examples	Conclusions
00000	00000	00	

- Lyapunov theory: Powerful framework for establishing the stability of **any** dynamical system without the need for an explicit solution
- Translates naturally to linear systems
- Extension to non-autonomous nonlinear systems, input-to state stability
- Lyapunov-based nonlinear controller synthesis
- Only sufficient condition: need to define and test Lyapunov function candidate

• Energy: central role (think large-scale systems/networks).