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The Concept of Stability

Consider the generic nonlinear system

ẋ = f(x), f : D → IR (1)

such that f(x) is continuously differentiable and locally Lipschitz,
i.e., ‖ f(x)− f(y) ‖≤ L ‖ x− y ‖. Assume, without loss of generality, that
0 is an equilibrium point of this system, i.e., f(0) = 0.

Definition

The equilibrium point x = 0 is said to be:

stable if ∀ ε > 0,∃ δ = δ(ε) > 0, s.t.

‖ x(0) ‖< δ =⇒‖ x(t) ‖< ε, ∀ t > 0 (2)

unstable otherwise

asymptotically stable if it is stable and δ can be chosen such that
‖ x(0) ‖< δ =⇒ limt→∞ = 0
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The Concept of Stability

Observation: the above definition is a challenge-answer process: “for any
value of ε, we must produce a δ that satisfies the conditions in the
definition:” an impractical approach.

Example

Consider a pendulum with friction

Described by the equation: ml θ̈ = −mg sin θ − kl θ̇
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The Concept of Stability

Pendulum example, continued

Coordinate change to obtain a first-order ODE: x1 = θ; x2 = θ̇

ẋ1 = x2 (3)

ẋ2 = −g

l
sin x1 −

k

m
x2 (4)

Solutions: periodic (nπ, 0), n = 0,±1,±2, . . . .
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The Concept of Stability

Pendulum example, continued
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Figure: State trajectories with g = 9.81, l = 0.981, m = 1, k = 0

In the absence of friction, the system is stable in the sense of the
definition given above.



Introduction Lyapunov Stability Examples Conclusions

The Concept of Stability

Pendulum example, continued

−15 −10 −5 0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

10

x
1

x 2

0 5 10 15 20 25 30
6

7

8

9

10

11

12

13

14

x 1

time

Figure: State trajectories with g = 9.81, l = 0.981, m = 1, k = 1

Friction attenuates oscillations and the pendulum eventually returns to
the origin. It is therefore asymptotically stable in the sense of the
definition given above.
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An Alternative Approach

Observation: using the graphical method is cumbersome and very
impractical for large(r)-scale systems (n > 2). Is there a more general way
to establish stability?

Pendulum example, continued

Define the energy of the pendulum, E (x) = KE + PE :

KE = 0.5ml2θ̇2 (5)

PE = mgl(1− cos θ) (6)

E (x) =
1

2
ml2x22 + mgl(1− cos x1) (7)
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An Alternative Approach

Pendulum example, continued

no friction =⇒ no energy dissipation, E (x) = c , or dE
dt = 0 along

the system trajectories. E (x) = c forms a closed contour around
x = 0, which is a stable equilibrium point.

friction =⇒ energy dissipation, dE
dt ≤ 0 along the system

trajectories. Pendulum eventually returns to the stable equilibrium
point x = 0.

Examining the derivative of E (x) along the state trajectories provides
indications on the stability of the system.

Question

Is it possible to define and use some function other than energy to assess
system stability?
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Lyapunov Stability

Let V : D → IR be a continuously differentiable function. The derivative
of V along the state trajectories of x is given by:

V̇ (x) =
n∑

i=1

∂V

∂xi
ẋi =

n∑
i=1

∂V

∂xi
fi (x) =

∂V

∂x
f(x) (8)

Theorem (Lyapunov’s stability theorem)

Let x = 0 be an equilibrium point of ẋ = f(x), D ⊂ IRn a domain
containing x = 0. Let V : D → IR be a continuously differentiable
function, such that:
V (0) = 0; V (x) > 0 in D−{0}; V̇ (x) ≤ 0 in D
Then, x = 0 is stable.
Moreover, if
V̇ (x) ≤ 0 in D − {0},
x = 0 is asymptotically stable.
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Lyapunov Stability
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Lyapunov Stability

The function V is referred to as a Lyapunov function. The surface
V (x) = c is a Lyapunov surface.
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if V̇ ≤ 0, when the trajectory crosses a surface, it will not cross back
again.

if V̇ < 0, the state trajectory crosses the surfaces with decreasing
values of C, shrinking to the origin.
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Observations

The Lyapunov stability theorem can be applied without solving the
ODE system

The theorem provides a sufficient condition for stability

The theorem does not provide a systematic method for constructing
the Lyapunov function V of a system.

Constructing (candidate) Lyapunov functions

energy is a natural candidate if well defined

quadratic functions of the form V = xTPx, with P real, symmetric
and positive (semi)definite.
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Examples

Example 1: Pendulum Energy as Lyapunov Function

Consider pendulum without friction. We have

V (x) = mgl(1− cos x1) + 0.5ml2x22 (9)

We can verify that:
V (0) = 0 and V (x) > 0 for −2π < x1 < 2π.

V̇ (x) = mglẋ1 sin x1 + ml2x2ẋ2 (10)

= mglx2 sin x1 + ml2x2ẋ2 (11)

= mglx2 sin x1 + ml2x2[−g

l
sin x1] (12)

= mglx2 sin x1 −mglx2 sin x1 (13)

= 0 (14)

Conclusion: Pendulum is stable (not asymptotically stable).
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Examples

Example 2: A Quadratic Lyapunov Function for Pendulum with Friction

Will be worked in class.
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Conclusions/Food for Thought

Lyapunov theory: Powerful framework for establishing the stability of
any dynamical system without the need for an explicit solution

Translates naturally to linear systems

Extension to non-autonomous nonlinear systems, input-to state
stability

Lyapunov-based nonlinear controller synthesis

Only sufficient condition: need to define and test Lyapunov function
candidate

Energy: central role (think large-scale systems/networks).
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